
KNIME: THE KONSTANZ INFORMATION MINER 1

Knime: The Konstanz Information Miner
Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Koetter,

Thorsten Meinl, Peter Ohl, Christoph Sieb, and Bernd Wiswedel.

Abstract— The Konstanz Information Miner is a modular
environment which enables easy visual assembly and inter-
active execution of a data pipeline. It is designed as a teach-
ing, research and collaboration platform, which enables easy
integration of new algorithms, data manipulation or visual-
ization methods as new modules or nodes. In this White
Paper we describe some of the design aspects of the under-
lying architecture and briefly sketch how new nodes can be
incorporated.

I. Overview

The need for modular data analysis environments has in-
creased dramatically over the past years. In order to make
use of the vast variety of data analysis methods around, it
is essential that such an environment is easy and intuitive
to use, allows for quick and interactive changes to the anal-
ysis and enables the user to visually explore the results. To
meet these challenges a data pipelining environment is an
appropriate model. It allows the user to visually assem-
ble and adapt the analysis flow from standardized building
blocks, at the same time offering an intuitive, graphical
way to document what has been done.

Knime, the Konstanz Information Miner provides such
an environment. Figure 1 shows a screenshot of an ex-
ample analysis flow. In the center, a flow is reading in
data from three sources and processes it in several, also
parallel analysis flows, consisting of preprocessing, model-
ing, and visualization nodes. On the left a repository of
nodes is shown. From this large variety of nodes, one can
select data sources, data preprocessing steps, model build-
ing algorithms, visualization techniques as well as model
I/O tools and drag them onto the workbench where they
can be connected to other nodes. The ability to have all
views interact graphically creates a powerful environment
to explore the data sets at hand. Knime is written in Java
and it’s graphical workflow editor is implemented as an
Eclipse [1] plug-in. It is easy to extend through an open
API and a data abstraction framework, which allows for
new nodes to be quickly added in a well-defined way.

In this white paper we will describe some of the inter-
nals of Knime in more detail. More information as well as
downloads can be found at http://www.knime.org.

II. Architecture

The architecture of Knime was designed with three main
principles in mind:
• visual, interactive framework: data flows should be com-
bined by simple drag&drop from a variety of processing
units. Customized applications can be modelled through
individual data pipelines.
• modularity: Processing units and data containers should
not depend on each other in order to enable easy distri-
bution of computation and allow for independent develop-
ment of different algorithms. Data Types are encapsulated,

Konstanz University, Department of Computer and Informa-
tion Science, Fach M712, 78457 Konstanz, Germany. email:
Michael.Berthold@uni-konstanz.de

that is, no types are predefined, new types can easily be
added bringing along type specific renderers and compara-
tors. New types can be declared compatible to existing
types.
• easy expandability: It should be easy to add new pro-
cessing nodes, or views and distribute them through a sim-
ple plug&play principle without the need for complicated
install/deinstall procedures.
In order to achieve this, a data analysis process consists
of a pipeline of nodes, connected by edges that transport
either data or models. Each node processes the arriving
data and/or model(s) and produces results on its outputs.
Figure 2 schematically illustrates this process. The type
of processing ranges from simple data operations such as
filtering or merging to more complex statistical functions,
such as computations of mean, standard deviation or linear
regression coefficients to computation intensive data mod-
eling operators (clustering, decision trees, neural networks,
to name just a few). In addition most of the modeling nodes
allow to interactively explore their results through accom-
panying views. In the following we will briefly describe the
underlying schemata of data, node, workflow management
and how the interactive views communicate.

A. Data Structures

All data flowing between nodes is wrapped within a class
called DataTable which holds meta-information concerning
the type of its columns and the actual data. The data can
be accessed by iterating over instances of DataRow. Each
row contains a unique identifier (or primary key) and a
specific number of DataCell objects which hold the actual
data. The reason to avoid access by Row ID or index is
scalability, that is, the desire to be able to process large
amounts of data and therefore not be forced to keep all of
the rows in memory for fast, random access. Figure 3 shows
an UML diagram of the main underlying data structure.

B. Nodes

Nodes in Knime are the most general processing unit and
usually resemble one visual node in the workflow. The class
Node wraps all functionality and makes use of user defined
implementations of a NodeModel, possibly a NodeDialog,
and one or more NodeView instances if appropriate. Nei-

Fig. 2. A schematic for the flow of data and models in a Knime-
workflow.



2 KNIME: THE KONSTANZ INFORMATION MINER

Fig. 1. An example analysis flow inside Knime.

ther dialog nor view must be implemented if no user set-
tings or views are needed. This schema follows the well-
known Model-View-Controller design pattern. In addition,
for the input and output connections, each node has a
number of Inport and Outport instances which can ei-
ther transport data or model(s). Figure 4 shows an UML
diagram of this structure.

C. Workflow Management

Workflows in Knime are essentially graphs connecting
nodes, or more formally, a direct acyclic graph (DAG). The
WorkflowManager allows to insert new nodes and to add
directed edges (connections) between two nodes. It also
keeps track of the status of nodes (configured, executed,
...) and returns, on demand, a pool of executable nodes.
This way the surrounding framework can freely distribute
the workload among a couple of parallel threads or – in the
future – even a distributed cluster of servers. Thanks to
the underlying graph structure, the workflow manager is
able to determine all nodes required to be executed along
the paths leading to the node the user actually wants to
execute.

D. Views and Interactive Brushing

Each Node can have an arbitrary number of views
associated with it. Through receiving events from a
HiLiteHandler (and sending events to it) it is possible
to mark (the so-called HiLiting) selected points in such a
view to enable visual brushing. Views can range from sim-
ple table views to more complex views on the underlying
data or the generated model.

III. Repository

Knime already offers a large variety of nodes, among
them are nodes for various types of data I/O, manipula-
tion, and transformation, as well as data mining and ma-

chine learning, and visualization components:
• data I/O: generic file reader, ARFF and Hitlist file
reader, database connector, CSV, Hitlist and ARFF writer.
• data manipulation: row and column filtering, data par-
titioning and sampling, random shuffling or sorting, data
joiner and merger,
• data transformation: missing value replacer, matrix
transposer, binners, nominal value generators
• mining algorithms: clustering (k-means, sota, fuzzy c-
means), decision tree, (fuzzy) rule induction, regression,
subgroup and association rule mining.
• machine learning: neural networks (RBF and MLP), sup-
port vector machines?, bayes networks and bayes classifier?

• statistics: via integrated R?

• visualization: scatter plot, histogram, parallel coordi-
nates, multidimensional scaling, rule plotters, line and pie
charts?

• misc: scripting nodes.
(?: via external libraries or tools).

IV. Extending Knime

Knime already includes new plug-ins to incorporate ex-
isting data analysis tools, such as Weka [2], the statistical
toolkit R [3], and JFreeChart [4]. It is usually straightfor-
ward to create wrappers for external tools without having
to modify these executables themselves. Adding new nodes
to Knime, also for native new operations, is easy. For this,
one needs to extend three abstract classes:
• NodeModel: this class is responsible for the main com-
putations. It requires to overwrite three main meth-
ods: configure(), execute(), and reset(). The first
takes the meta information of the input tables and creates
the definition of the output specification. The execute-
function performs the actual creation of the output data
or models, and reset discards all intermediate results.
• NodeDialog: this class is used to specify the dia-
log that enables the user to adjust individual settings



KNIME: THE KONSTANZ INFORMATION MINER 3

that affect the node’s execution. A standardized set of
DefaultDialogComponent objects allows to very quickly
create dialogs where only a few standard settings are
needed.
• NodeView: this class can be overwritten multiple times to
allow for different views onto the underlying model. Each
view is automatically registered with a HiLiteHandler
which sends events when other views have hilited points
and allows to launch events in case inside this view points
have been hilit.
In addition to the three model, dialog, and view classes the
programmer also needs to provide a NodeFactory, creat-
ing new instances. The factory also provides names and
other details such as the number of available views or a
flag indicating absence or presence of a dialog.

A wizard integrated in the Eclipse-based development
environment allows to quickly generate all required class
bodies for a new node.

V. Work in Progress

Knime is continuously extended. A few extensions cur-
rently being actively under development are described be-
low:

A. Meta Nodes

The ability to wrap a certain sub workflow into an en-
capsulating node will enable us to assign dedicated servers
to this subflow, export it to other users as a predefined
module and allow us to create wrappers for repeated ex-
ecution as needed in cases such as, e.g. cross-validation,
bagging and boosting, ensemble learning etc. First proto-
types work nicely and we expect to release this feature in
the near future. The ability to handle nested workflows will
also enable the user to visually design much larger, more
complex workflows.

B. Distributed Processing

Due to the modular architecture it is easy to designate
specific nodes to be run on separate machines. But to

Fig. 3. A UML diagram of the data structure and the main classes
it relies on.

Fig. 4. A UML diagram of the Node and the main classes it relies
on.

accommodate the increasing availability of multi-core ma-
chines, also the support for shared memory parallelism be-
comes increasingly important. Knime will offer a unified
framework to parallelize data-parallel operations as well as
the distribution of operations on a cluster or a GRID.

C. Chem- and Bioinformatics

A number of current projects focus on applications in the
Life Sciences. Nodes to process gene expression data and
high throughput, high content cell assay images are under
development.

D. Webservices

Experimental nodes to access webservices via SOAP have
been devised to call computation of chemical properties.
Knime itself can also be seen as a potential server for a
webservice itself, allowing external users to run predefined
workflows.

VI. Acknowledgements

We would like to thank numerous students of Konstanz
University for continuous feedback and bug reporting. We
thank, in particular, Kilian Thiel and Simona Pintilie for
their work on Sota resp. the Parallel Coordinates display.

References

[1] Eclipse Foundation, Eclipse 3.1 Documentation,
http://www.eclipse.org.

[2] Ian H. Witten and Eibe Frank, Data Mining: Practical machine
learning tools and techniques, Morgan Kaufmann, San Francisco,
2005, http://www.cs.waikato.ac.nz/ ml/weka/index.html.

[3] R Development Core Team, R: A language and environment for
statistical computing, R Foundation for Statistical Computing,
Vienna, Austria, 2005, http://www.R-project.org.

[4] David Gilbert, JFreeChart Developer Guide, Ob-
ject Refinery Limited, Berkeley, California, 2005,
http://www.jfree.org/jfreechart.


