New Cached-Sufficient Statistics Algorithms for quickly answering statistical questions

Graduate Students

- Cached Sufficient Statistics New searches over cached statistics

Biosurveillance and Epidemiology
Scan Statistics
Cached Scan Statistics
Branch-and-Bound Scan Statistics
Retail data monitoring
Brain monitoring
Entering Google

Asteroids
Multi (and I mean multi) object target tracking Multiple-tree search
Entering Google

Data Analysis: The old days

Size	Ellipticity	Color
23	0.96	Red
33	0.55	Red
36		Green
40		
20		
48		

Data Analysis: The new days

Cached Sufficient Statistics

1,000 columns

Cached Sufficient Statistics

1,000 columns

> Frequent Sets (Agrawal et al)

KD-trees (Friedman, Bentley, Finkel)
Multi-resolution KD-trees (Deng, Moore)
All-Dimensions Trees (Moore, Lee)
Multi-resolution metric trees (Liu, Moore)
Well-Separated Pairwise Decomposition (Callahan 1995)

TimeCube (Sabhnani, Moore)

Cached Sufficient Statistics

New searches over cached statistics

Biosurveillance and Epidemiology
Scan Statistics
Cached Scan Statistics
Branch-and-Bound Scan Statistics
Retail data monitoring
Brain monitoring
Entering Google
Asteroids
Multi (and I mean multi) object target tracking
Multiple-tree search
Entering Google

Cached Sufficient Statistics

New searches over cached statistics

Biosurveillance and Cominlonv
Scan Statistics Roberto Bayardo
Scan Statistics Geoff Webb
Cached Scan S Martin Kulldorf
Branch-and-Bo Pregibon and DuMouchel
Retail data monitoring
Brain monitoring
Entering Google

Asteroids
Multi (and I mean multi) object target tracking
Multiple-tree search
Entering Google

Cached Sufficient Statistics
 New searches over cached statistics

D Biosurveillance and Epidemiology Scan Statistics
Cached Scan Statistics
Branch-and-Bound Scan Statistics
Retail data monitoring
Brain monitoring
Entering Google

Asteroids
Multi (and I mean multi) object target tracking
Multiple-tree search
Entering Google

..Early Thursday Morning. Russia. April 1979...

collaboration with Daniel Neill neill@cs.cmu.edu

Sverdlovsk Region: Epi-map

Biosurveillance Algorithms

Biosurveillance Algorithms

Specific Detectors

CityDiagnosis (DBN-based surveillance): [Anderson, Moore]

EPFC: Emerging Patterns from food complaints:
[Dubrawski, Sabhnani, Moore]

General Detectors

What's Strange about Recent Events [Wong, Moore, Wagner and Cooper]

Fast Scan Statistic
[Neill, Moore]

Fast Scan for Oriented Regions [Neill, Moore et al.]

Historical Model Scan Statistic
[Hogan, Moore, Neill, Tsui, Wagner]

Bayesian Network Spatial Scan
[Neill, Moore,
Schneider, Cooper Wagner, Wong]

Biosurveillance Algorithms

Specific Detectors

General Detectors
PANDA2: Patient-based Bayesian Network [Cooper, Levander et. al]

BARD: Airborne Attack Detection
[Hogan, Cooper]

One Step of Spatial Scan

Entire area being scanned

collaboration with Daniel Neill neill@cs.cmu.edu

One Step of Spatial Scan

Entire area being scanned

collaboration with Daniel Neill neill@cs.cmu.edu

One Step of Spatial Scan

Entire area being scanned

One Step of Spatial Scan

Entire area being scanned

Scoring functions

- Define models:
- of the null hypothesis H_{0} : no attacks.
- of the alternative hypotheses $\mathrm{H}_{1}(\mathrm{~S})$: attack in region S .

Scoring functions

- Define models:
- of the null hypothesis H_{0} : no attacks.
- of the alternative hypotheses $\mathrm{H}_{1}(\mathrm{~S})$: attack in region S .

- Derive a score function Score(S) = Score(C, B).
- Likelihood ratio:
$\operatorname{Score}(S)=\frac{L\left(\text { Data } \mid H_{1}(S)\right)}{L\left(\text { Data } \mid H_{0}\right)}$
- To find the most significant region:

$$
S^{*}=\arg \max \operatorname{Score}(S)
$$

Scoring functions

- Define models:
- of the null hypothesis H_{0} : no attacks.
- of the alternative hypotheses $\mathrm{H}_{1}(\mathrm{~S})$: attack in region S .
- Derive a score function Score(S) = Score(C, B).
- Likelihood ratio:
- To find the most significant region:

Example: Kulldorf's score Assumption: $\mathrm{c}_{\mathrm{i}} \sim$ Poisson $\left(\mathrm{qb}_{\mathrm{i}}\right)$
$H_{0}: q=q_{\text {all }}$ everywhere $H_{1}: q=q_{\text {in }}$ inside region,

$$
q=q_{\text {out }} \text { outside region }
$$

$$
\begin{aligned}
& \text { Score }(S)=\frac{L\left(\text { Data } \mid H_{1}(S)\right)}{L\left(\text { Data } \mid H_{0}\right)} \\
& S^{*}=\underset{S}{\arg \max \operatorname{Score}(S)}
\end{aligned}
$$

Scoring functions

- Define models:
- of the null hypothesis H_{0} : no attacks.
- of the alternative hypotheses $\mathrm{H}_{1}(\mathrm{~S})$: attack in region S .
- Derive a score function Score(S) = Score(C, B).
- Likelihood ratio:
- To find the most $\quad S^{*}=\arg \max \operatorname{Score}(S)$ significant region:

$$
D(S)=C \log \frac{C}{B}+\left(C_{t o t}-C\right) \log \frac{C_{t o t}-C}{B_{t o t}-B}-C_{\text {tot }} \log \frac{C_{\text {tot }}}{B_{\text {tot }}}
$$

(Individually Most Powerful statistic for detecting significant increases) (but still...just an example)

One Step of Spatial Scan

Entire area being scanned

Many Steps of Spatial Scan

Entire area being scanned

Many Steps of Spatial Scan

Entire area being scanned

Computational framework

Data is aggregated to a grid.

$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=27 \end{aligned}$	$\begin{aligned} & \mathrm{B}=18 \\ & \mathrm{C}=14 \end{aligned}$	$\begin{aligned} & \mathrm{B}=22 \\ & \mathrm{C}=22 \end{aligned}$	$\begin{aligned} & \mathrm{B}=14 \\ & \mathrm{C}=15 \end{aligned}$	$\begin{aligned} & \mathrm{B}=5 \\ & \mathrm{C}=5 \end{aligned}$
$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=26 \end{aligned}$	$\begin{aligned} & \mathrm{B}=20 \\ & \mathrm{C}=17 \end{aligned}$	$\begin{aligned} & \mathrm{B}=6 \\ & \mathrm{C}=9 \end{aligned}$	$\begin{aligned} & \mathrm{B}=20 \\ & \mathrm{C}=12 \end{aligned}$	$\begin{aligned} & B=5 \\ & C=4 \end{aligned}$
$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=19 \end{aligned}$	$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=26 \end{aligned}$	$\begin{aligned} & B=20 \\ & C=43 \end{aligned}$	$\begin{aligned} & \mathrm{B}=15 \\ & \mathrm{C}=37 \end{aligned}$	$\begin{aligned} & \mathrm{B}=20 \\ & \mathrm{C}=20 \end{aligned}$
$\begin{aligned} & \mathrm{B}=24 \\ & \mathrm{C}=18 \end{aligned}$	$\begin{aligned} & \mathrm{B}=24 \\ & \mathrm{C}=20 \end{aligned}$	$\begin{aligned} & \mathrm{B}=19 \\ & \mathrm{C}=40 \end{aligned}$	$\begin{aligned} & \mathrm{B}=15 \\ & \mathrm{C}=32 \end{aligned}$	$\begin{aligned} & \mathrm{B}=19 \\ & \mathrm{C}=16 \end{aligned}$
$\begin{aligned} & \mathrm{B}=23 \\ & \mathrm{C}=20 \end{aligned}$	$\begin{aligned} & \mathrm{B}=15 \\ & \mathrm{C}=17 \end{aligned}$	$\begin{aligned} & B=14 \\ & C=8 \end{aligned}$	$\begin{aligned} & B=10 \\ & C=10 \end{aligned}$	$\begin{aligned} & \mathrm{B}=2 \\ & \mathrm{C}=3 \end{aligned}$

Computational framework

Data is aggregated to a grid.

Cost of obtaining sufficient statistics for an arbitrary rectangle: O(1)

$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=27 \end{aligned}$	$\begin{aligned} & \mathrm{B}=18 \\ & \mathrm{C}=14 \end{aligned}$	$\begin{aligned} & \mathrm{B}=22 \\ & \mathrm{C}=22 \end{aligned}$	$\begin{aligned} & \mathrm{B}=14 \\ & \mathrm{C}=15 \end{aligned}$	$\begin{aligned} & \mathrm{B}=5 \\ & \mathrm{C}=5 \end{aligned}$
$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=26 \end{aligned}$	$\begin{aligned} & \mathrm{B}=20 \\ & \mathrm{C}=17 \end{aligned}$	$\begin{aligned} & \mathrm{B}=6 \\ & \mathrm{C}=9 \end{aligned}$	$\begin{aligned} & \mathrm{B}=20 \\ & \mathrm{C}=12 \end{aligned}$	$\begin{aligned} & \mathrm{B}=5 \\ & \mathrm{C}=4 \end{aligned}$
$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=19 \end{aligned}$	$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=26 \end{aligned}$	$\begin{aligned} & \mathrm{B}=20 \\ & \mathrm{C}=43 \end{aligned}$	$\begin{aligned} & \mathrm{B}=15 \\ & \mathrm{C}=37 \end{aligned}$	$\begin{aligned} & \mathrm{B}=20 \\ & \mathrm{C}=20 \end{aligned}$
$\begin{aligned} & \mathrm{B}=24 \\ & \mathrm{C}=18 \end{aligned}$	$\begin{aligned} & \mathrm{B}=24 \\ & \mathrm{C}=20 \end{aligned}$	$\begin{aligned} & \mathrm{B}=19 \\ & \mathrm{C}=40 \end{aligned}$	$\begin{aligned} & \mathrm{B}=15 \\ & \mathrm{C}=32 \end{aligned}$	$\begin{aligned} & \mathrm{B}=19 \\ & \mathrm{C}=16 \end{aligned}$
$\begin{aligned} & \mathrm{B}=23 \\ & \mathrm{C}=20 \end{aligned}$	$\begin{aligned} & \mathrm{B}=15 \\ & \mathrm{C}=17 \end{aligned}$	$\begin{aligned} & \mathrm{B}=14 \\ & \mathrm{C}=8 \end{aligned}$	$\begin{aligned} & \mathrm{B}=10 \\ & \mathrm{C}=10 \end{aligned}$	$\begin{aligned} & \mathrm{B}=2 \\ & \mathrm{C}=3 \end{aligned}$

Computational framework

Data is aggregated to a grid.

Cost of obtaining sufficient statistics for an arbitrary rectangle: O(1)
$n \times n$ grid has

$$
\left[\binom{n+1}{2}\right]^{2}=O\left(n^{4}\right)
$$

rectangles to search

$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=27 \end{aligned}$	$\begin{aligned} & \mathrm{B}=18 \\ & \mathrm{C}=14 \end{aligned}$	$\begin{aligned} & \mathrm{B}=22 \\ & \mathrm{C}=22 \end{aligned}$	$\begin{aligned} & \mathrm{B}=14 \\ & \mathrm{C}=15 \end{aligned}$	$\begin{aligned} & \mathrm{B}=5 \\ & \mathrm{C}=5 \end{aligned}$
$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=26 \end{aligned}$	$\begin{aligned} & B=20 \\ & C=17 \end{aligned}$	$\begin{aligned} & \mathrm{B}=6 \\ & \mathrm{C}=9 \end{aligned}$	$\begin{aligned} & \mathrm{B}=20 \\ & \mathrm{C}=12 \end{aligned}$	$\begin{aligned} & B=5 \\ & C=4 \end{aligned}$
$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=19 \end{aligned}$	$\begin{aligned} & \mathrm{B}=25 \\ & \mathrm{C}=26 \end{aligned}$	$\begin{aligned} & \mathrm{B}=20 \\ & \mathrm{C}=43 \end{aligned}$	$\begin{aligned} & \mathrm{B}=15 \\ & \mathrm{C}=37 \end{aligned}$	$\begin{aligned} & B=20 \\ & C=20 \end{aligned}$
$\begin{aligned} & \mathrm{B}=24 \\ & \mathrm{C}=18 \end{aligned}$	$\begin{aligned} & \mathrm{B}=24 \\ & \mathrm{C}=20 \end{aligned}$	$\begin{aligned} & \mathrm{B}=19 \\ & \mathrm{C}=40 \end{aligned}$	$\begin{aligned} & \mathrm{B}=15 \\ & \mathrm{C}=32 \end{aligned}$	$\begin{aligned} & \mathrm{B}=19 \\ & \mathrm{C}=16 \end{aligned}$
$\begin{aligned} & \mathrm{B}=23 \\ & \mathrm{C}=20 \end{aligned}$	$\begin{aligned} & \mathrm{B}=15 \\ & \mathrm{C}=17 \end{aligned}$	$\begin{aligned} & \mathrm{B}=14 \\ & \mathrm{C}=8 \end{aligned}$	$\begin{aligned} & \mathrm{B}=10 \\ & \mathrm{C}=10 \end{aligned}$	$\begin{aligned} & \mathrm{B}=2 \\ & \mathrm{C}=3 \end{aligned}$

Many Steps of Spatial Scan

Entire area being scanned

Many Steps of Spatial Scan

Many Steps of Spatial Scan

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called 'Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called 'Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

The multi-resolution tree for rectangular regions

collaboration with Daniel Neill neill@cs.cmu.edu

Gridded then Exhaustive

Step 1: Gridded

Check a specific recursive overlapping set of regions called "Gridded Regions"

Step 2: Exhaustive
Consider the set of subregions of a Gridded Region.

A subregion of me could be one of five types...
\square...entirely inside my left gridded child
\square...entirely inside my top gridded child

..entirely inside my bottom gridded child

...not entirely inside any of my 4 gridded children

then Exhaustive

Step 2: Exhaustive

Consider the set of subregions of a Gridded Region.

A subregion of me could be one of five types...

...entirely inside my left gridded child
\square..entirely inside my top gridded child

...not entirely inside any of my 4 gridded children

then Exhaustive

Step 2: Exhaustive

Consider the set of subregions of a Gridded Region.

FACT: Any subregion of this

 type must include the middle... ...and we can put fairly tight bounds on how well any region of this type can scoreA subregion of me could be one of five types...

 ...not entirely inside
any of my 4 gridded ...not entirely inside
any of my 4 gridded children bottom gridded child
..entirely in my right gridded child

then Exhaustive

Procedure: Exhaust(Gridded Region)

1. Exhaust(Region.Left)
2. Exhaust(Region.Top)
3. Exhaust(Region.Bottom)
4. Exhaust(Region.Right)
5. Ts it possible that any "Type 5" subregion of "Gridded Region" could score better than best known score to date?

NO: Quit Procedure!
YES: Check all "Type 5" Subregions

If S^{\prime} is a middle-containing subregion of $S .$.

5. Is it possible that any "Type 5" subregion of "Gridded Region" could score better than best known score to date?

If S^{\prime} is a middle-containing subregion of $S . .$.

Score(S') = Score(count(S'), baseline(S'))
5. Is it possible that any "Type 5" subregion of "Gridded Region" could score better than best known score to date?

If S^{\prime} is a middle-containing subregion of $S \ldots$

An upper bound of
c/b for any subregion
of S-M

$$
\begin{aligned}
& d_{i n c} \geq \frac{c\left(S^{\prime}\right)-c(M)}{b\left(S^{\prime}\right)-b(M)} \\
& b(M) \leq b\left(S^{\prime}\right) \leq b(S) \\
& c(M) \leq c\left(S^{\prime}\right) \leq c(S)
\end{aligned}
$$

An upper bound of c / b for any subregion of S that contains M

A lower bound on c/b for any subregion of S that excludes M

$$
d_{\max } \geq \frac{c\left(S^{\prime}\right)}{b\left(S^{\prime}\right)}
$$

$$
d_{\min } \leq \frac{c(S)-c\left(S^{\prime}\right)}{b(S)-b\left(S^{\prime}\right)}
$$

Score(S') = Score(count(S'), baseline(S'))
5. Is it possible that any "Type 5" subregion of "Gridded Region" could score better than best known score to date?

If S^{\prime} is a middle-containing subregion of $S . .$.

Assume:

$$
\begin{aligned}
& \frac{\partial}{\partial c} \operatorname{Score}(c, b) \geq 0 \\
& \frac{\partial}{\partial b} \operatorname{Score}(c, b) \leq 0
\end{aligned}
$$

$$
\frac{\partial}{\partial b} \operatorname{Score}(c, b)+\frac{c}{b} \frac{\partial}{\partial c} \operatorname{Score}(c, b) \geq 0
$$

A lower bound on c/b for any subregion of S that excludes C

$$
\begin{aligned}
& d_{i n c} \geq \frac{c\left(S^{\prime}\right)-c(M)}{b\left(S^{\prime}\right)-b(M)} \\
& b(M) \leq b\left(S^{\prime}\right) \leq b(S) \\
& c(M) \leq c\left(S^{\prime}\right) \leq c(S) \\
& d_{\max } \geq \frac{c\left(S^{\prime}\right)}{b\left(S^{\prime}\right)} \\
& d_{\min } \leq \frac{c(S)-c\left(S^{\prime}\right)}{b(S)-b\left(S^{\prime}\right)}
\end{aligned}
$$

Score(S') = Score(count(S') , baseline(S'))
5. Is it possible that any "Type 5" subregion of "Gridded Region" could score better than best known score to date?

$\frac{\partial}{\partial c}$ Score $(c, b) \geq 0$ Properties of $\mathrm{D}(\mathrm{S})$

 Score(S) increases with the total count of $S, C(S)=\sum_{S} C_{i}$.

$\frac{\partial}{\partial b} \operatorname{Score}(c, b) \leq 0$ Properties of $D(S)$

Score(S) decreases with total baseline of $S, B(S)=\sum_{s} b_{i}$.

Properties of $D(S)$

For a constant ratio C / B, Score(S) increases with C and B.

If S^{\prime} is a middle-containing subregion of $S . .$.

Assume:

$$
\begin{aligned}
& \frac{\partial}{\partial c} \operatorname{Score}(c, b) \geq 0 \\
& \frac{\partial}{\partial b} \operatorname{Score}(c, b) \leq 0
\end{aligned}
$$

$$
\frac{\partial}{\partial b} \operatorname{Score}(c, b)+\frac{c}{b} \frac{\partial}{\partial c} \operatorname{Score}(c, b) \geq 0
$$

A lower bound on c/b for any subregion of S that excludes C

$$
\begin{aligned}
& d_{i n c} \geq \frac{c\left(S^{\prime}\right)-c(M)}{b\left(S^{\prime}\right)-b(M)} \\
& b(M) \leq b\left(S^{\prime}\right) \leq b(S) \\
& c(M) \leq c\left(S^{\prime}\right) \leq c(S) \\
& d_{\max } \geq \frac{c\left(S^{\prime}\right)}{b\left(S^{\prime}\right)} \\
& d_{\min } \leq \frac{c(S)-c\left(S^{\prime}\right)}{b(S)-b\left(S^{\prime}\right)}
\end{aligned}
$$

Score(S') = Score(count(S') , baseline(S'))
Bottom Line: all the above lets us put a good upper bound on Score(S') urrdded Region" could score better

Tighter score bounds by quartering

- We precompute global bounds on populations p_{ij} and ratios $\mathrm{c}_{\mathrm{ij}} / \mathrm{p}_{\mathrm{ij}}$, and use these for our initial pruning.
- If we cannot prune the outer regions of S using the global bounds, we do a second pass which is more expensive but allows much more pruning.
- We can use quartering to give much tighter bounds on populations and ratios, and
 compute a better score bound using these.
- Requires time quadratic in region size; in effect, we are computing bounds for all irregular but rectanglelike outer regions.

Where are we?

- So we can find the most significant region by searching over the desired set of regions S , and finding the highest $D(S)$.
- Now how can we find whether this region actually is a significant cluster?

Where are we?

- So we can find the most significant region by searching over the desired set of regions S , and finding the highest $D(S)$.
- Now how can we find whether this region actually is a significant cluster?

Why the Scan Statistic speed obsession?

Why the Scan Statistic speed obsession?

- Traditional Scan Statistics very expensive, especially with Randomization tests
- Going national
- A few hours could actually matter!

Which regions to search?

d-dimensional partitioning

- Parent region S is divided into 2d overlapping children: an "upper child" and a "lower child" in each dimension.
- Then for any rectangular subregion S' of S , exactly one of the following is true:
- S^{\prime} is contained entirely in (at least) one of the children $\mathrm{S}_{1} \ldots \mathrm{~S}_{2 \mathrm{~d}}$.
- S' contains the center region S_{C}, which is common to all the children.
- Starting with the entire grid G and repeating this partitioning recursively, we obtain the overlap-kd tree structure.

- Algorithm: Neill, Moore and Mitchell NIPS 2005

Results: OTC, fMRI

- fMRI data (64 x 64×14 grid):
- 7-148x speedups as compared to exhaustive search approach.

fMRI data from noun/verb word recognition task

Limitations of the algorithm

- Data must be aggregated to a grid.
- Not appropriate for very highdimensional data.
- Assumes that we are interested in finding (rotated) rectangular regions.
- Less useful for special cases (e.g. square regions, small regions only).
- Slower for finding multiple regions.

Density-based cluster detection

- Kernel density based detection
- Spatial statistics
- Connected component approaches
- Density optima
- Linear scan approximations

Density-based cluster detection

- Kernel density based detection
- Spatial statistics
- Connected component approaches
- Density optima
- Linear scan approximations
- DBSCAN (Ester, Kriegel, Sander and Xu)
- CFF Clustering (Cuevas, Febrero and Fraiman)
- CLIQUE (Agrawal, Gehrke, Gunopulus, and Raghavan)
- Priebe's method (Priebe)
- MAFIA (Goil, Nagesh and Choudhary)
- DENCLUE (Hinneburg and Keim)
- STING (Wang, Yang, and Muntz)
- Bump Hunting
(Friedman and Fisher)

Density-based cluster detection

- Account for varying baseline?
- Are the hotspots significant?
- Is there a small rise over a large stripe?
- Kernel density based detection
- Spatial statistics
- Connected component approaches
- Density optima
- Linear scan approximations
- DBSCAN (Ester, Kriegel, Sander and Xu)
- CFF Clustering (Cuevas, Febrero and Fraiman)
- CLIQUE (Agrawal, Gehrke, Gunopulus, and Raghavan)
- Priebe's method (Priebe)
- MAFIA (Goil, Nagesh and Choudhary)
- DENCLUE (Hinneburg and Keim)
- STING (Wang, Yang, and Muntz)
- Bump Hunting
(Friedman and Fisher)

For more information and references to related work...

- http://www.autonlab.org/autonweb/14667.html
@inproceedings\{neill-rectangles,
Howpublished = \{Conference on Knowledge Discovery in Databases (KDD)
2004\},
Month = \{August\},
Year $=\{2004\}$,
Editor $=\{\mathrm{J}$. Guerke and W. DuMouchel $\}$,
Author $=\{$ Daniel Neill and Andrew Moore $\}$,
Title $=\{$ Rapid Detection of Significant Spatial Clusters $\}$
\}
- http://www.autonlab.org/autonweb/15868.html
@inproceedings\{sabhnani-pharmacy,
Month $=\{$ August $\}$,
Year $=\{2005\}$,
Booktitle $=\{$ Proceedings of the KDD 2005 Workshop on Data Mining Methods for Anomaly Detection\},

Author $=\{$ Robin Sabhnani and Daniel Neill and Andrew Moore $\}$,
Title $=\{$ Detecting Anomalous Patterns in Pharmacy Retail Data\} \}

- Software: http://www.autonlab.org/autonweb/10474.html

Cached Sufficient Statistics
 New searches over cached statistics

Biosurveillance and Epidemiology
Scan Statistics
Cached Scan Statistics
Branch-and-Bound Scan Statistics
Retail data monitoring
Brain monitoring

- Entering Google

Asteroids

Multi (and I mean multi) object target tracking
Multiple-tree search
Entering Google

Cached Sufficient Statistics
 New searches over cached statistics

Biosurveillance and Epidemiology
Scan Statistics
Cached Scan Statistics
Branch-and-Bound Scan Statistics
Retail data monitoring
Brain monitoring
Entering Google

- Asteroids

Multi (and I mean multi) object target tracking
Multiple-tree search
Entering Google

Asteroid Tracking

Ultimate Goal: Find all asteroids large enough to do significant damage, calculate their orbits, and determine risk.

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Why Is This Hard/Interesting?

Partial Observability:

- Positions are in 3-d space.
- We see observations from earth.
- We see two angular coordinates (α, δ)
- We do not see the distance (r).

Why Is This Hard/Interesting?

Temporally sparse:

- Each region viewed infrequently.
- Each viewing only covers a fraction of the sky.

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Why Is This Hard/Interesting?

Lack of initial parameter information (and temporally sparse):

- We do not have initial estimates of all of the motion parameters.
- This becomes a significant problem for large gaps in $\hat{\sigma}^{\text {time. }}$

Problem Overview

Asteroid Tracking

Problem Overview

Asteroid Tracking

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Problem Overview

Asteroid Tracking

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Problem Overview

Asteroid Tracking

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Problem Overview

Asteroid Tracking

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Problem Overview

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Problem Overview

Asteroid Tracking

Previous Approaches

- Look for sets with linear movement over a short time span (Kristensen 2003, Milani 2004).
- "Close" observations from same night linked and used to estimate line (Marsden 1991, Milani 2004).
- Asteroid is projected to later nights and associated with other observations.

- Proposed sets of observations are tested by fitting an orbit.
collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Previous Approaches: Drawbacks

1. Linear projections will only be valid over a short time span.
2. Checking every neighbor can be \int Cost expensive.
3. Orbit fitting is only applied after sets
are found with linear approximation.

- May need to fit many orbits to incorrect sets.
- May incorrectly reject true linkages based on linear model.

Cost

Initial Improvements

- We can improve accuracy and tractability by using techniques from general target tracking:
- Sequential tracking,
- Multiple hypothesis tracker,
- Use of spatial structure via kd-trees, and
- Quadratic track models.

Evaluation

$\left.$	Model	kd- trees?	Time (sec)	Percent
Found				
:---:				
Correct	\right\rvert\,	Linear	No	93
:---:	:---:	---:		
96.22	2.06			
Linear	Yes	6		
96.22	2.06			
Quadratic	No	59		
96.38	88.67			
Quadratic	Yes	3		

Why "M-trees" method?

- Sequential approach is heuristic. We could end up doing a significant amount of work for "bad pairs".
- Early associations may be done with incomplete and/or noisy parameters.
- Next observation may be
 far from predicted position.
- Problem gets much worse as gap between observations increases.

Motivation 2: Constrained Feasibility

- Find all tuples of observations such that:
- We have exactly one observation per time, and
- a track can exist that passes "near" the observations:

Can phrase constraints in terms of only observation error!
collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Feasibility

- "Can any track exist that is near all of the observations?"
- Each observation's bounds give constraints on track's position at that time:

$$
\begin{aligned}
& a[d] t_{i}^{2}+v[d] t_{i}+p[d] \geq x_{i}[d]-\varepsilon \\
& a[d] t_{i}^{2}+v[d] t_{i}+p[d] \leq x_{i}[d]+\varepsilon
\end{aligned}
$$

- We must either:
- Find parameters satisfying these equations, OR
- Prove that no such parameters exist.

Multiple Tree Approach

- Our approach: Use a multi-tree algorithm (Gray and Moore 2001):
-Build multiple kd-trees over observations.
-Do a depth first search of combinations of tree nodes.

Multiple Tree Depth First Search

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Multiple Tree Depth First Search

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Multiple Tree Depth First Search

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Multiple Tree Depth First Search

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Multiple Tree Depth First Search

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Multiple Tree Depth First Search

collaboration with Jeremy Kubica jkubica@cs.cmu.edu

Pruning

- "Can any track exist that hits all nodes?"

Given times $t_{1}, t_{2}, \ldots t_{M}$, and given kdtree bounding boxes $\left(L_{1}, H_{1}\right),\left(L_{2}, H_{2}\right), \ldots\left(L_{M}, H_{M}\right)$, at those times, we ask...

$$
\begin{array}{r}
" \exists \mathbf{a}, \mathbf{v}, \mathbf{p} . \forall i \in\{1,2, \cdots M\}, \forall d \in\{1,2 \cdots D\}, \\
a[d] t_{i}^{2}+v[d] t_{i}+p[d] \geq L_{i}[d]-\varepsilon \\
a[d] t_{i}^{2}+v[d] t_{i}+p[d] \leq H_{i}[d]+\varepsilon
\end{array}
$$

- Pruning = proving that such parameters do not exist.

Pruning: Independent Dimensions

Theorem 1: (a, v, p) is a feasible track if and only if (a[i],v[i],p[i]) satisfies the constraints in the i-th dimension for all i.

- Allows us to check the dimensions separately.
- Breaks query on 2MD constraints into D sub-queries of $M D$ constraints.
- Each sub-query consists of significantly fewer variables.
$M=$ Number of timesteps (eg 4-6), $D=$ Number of obs. dim'ns (eg 2), $C=\#$ Track params (eg 3)

Constraints as Hyper-planes

- Each constraint specifies a C dimensional hyperplane and half-space in parameter space:

$$
p+\varepsilon<v t+p
$$

- If the intersection of the feasible half-spaces is not empty, then there exists a track that satisfies all of the constraints.
$M=$ Number of timesteps (eg 4-6), $D=$ Number of obs. dim'ns (eg 2), $C=\#$ Track params (eg 3)

Smart Brute Force Search

- Search "corners" of constraint hyper-planes for feasible point.
- C nonparallel Cdimensional hyper-planes intersect at a point ("Corner").

- Theorem 2: The intersection of M half-spaces defined by at least C nonparallel C-dimensional hyper-planes is not empty if and only if there exists a point (a, v, p) such that (a, v, p) is feasible and lies on at least C hyper-planes.
$M=$ Number of timesteps (eg 4-6), $D=$ Number of obs. dim'ns (eg 2), C = \# Track params (eg 3)

Smart Brute Force Search

- For each set of C nonparallel hyperplanes:
- Calculate the point of intersection.
- Test point for feasibility against other constraints.
- Positives: Simple, exact
- Negatives: Painfully slow -> $O\left(\mathrm{DM}^{(\mathrm{C}+1)}\right)$

Using Structure In the Search

- The tree search provides a significant amount of structure that can be exploited:
- At each level of the search, the constraints for all tree nodes except one are identical to the previous leval

We can save the feasible track from previous level and test it against new (tighter)
constraints.
$M=$ Number of timesteps (eg 4-6), $D=$ Number of obs. dim'ns (eg 2), $C=\#$ Track params (eg 3)

Using Structure In the Search

- The tree search provides a significant amount of structure that can be exploited:
- At each level of the search, the constraints for all tree nodes except one are identical to the previous level.
- At each level of the search, the constraints for the one tree node that changed are tighter than at the previnury feasible point on hyper-planes from new
constraints.

Using Structure In the Search

Theorem 3: If the feasible track from the previous level is not compatible with a new constraint then either the new set of constraints is not compatible or a new feasible point lies on the plane defined by the new constraint.

- Allows us to only check corners containing new constraints -> $\mathrm{O}\left(\mathrm{DM}^{\mathrm{C}}\right)$
- Allows us to check new constraints one at a time.
$M=$ Number of timesteps (eg 4-6), $D=$ Number of obs. dim'ns (eg 2), $C=\#$ Track params (eg 3)

Using Structure In the Search

- We can combine search and test steps.
- C-1 hyper-planes intersect at a line.
- Remaining hyperplanes intersect the line at signed points.

- There is feasible point on those C-1 constraints if and only if there is a feasible point on the line.
- Reduces cost to $\mathrm{O}\left(\mathrm{DM}^{(\mathrm{C}-1)}\right)$.
$M=$ Number of timesteps (eg 4-6), $D=$ Number of obs. dim'ns (eg 2), C = \# Track params (eg 3)

Additional Constraints

- This formulation of constraints allows us to add additional (non-node-based) constraints:

$$
\begin{aligned}
& v_{\min [d]} \leq v[d] \leq v_{\max }[d] \\
& a_{\min [d]} \leq a[d] \leq a_{\max }[d]
\end{aligned}
$$

- This allows us to encode additional domain knowledge!
$M=$ Number of timesteps (eg 4-6), $D=$ Number of obs. dim'ns (eg 2), $C=\#$ Track params (eg 3)

Multiple Trees: Advantages

- Allows us to consider pruning opportunities resulting from future time-steps.

- Reduces work repeated over similar observations/initial tracks.

Experiments

Experiment	Num Points	Seq secs	Seq $\mathrm{P}(\mathrm{C})$	Singletree secs	Singletree $\mathrm{P}(\mathrm{C})$	V-Tree secs	V-tree $\mathrm{P}(\mathrm{C})$
BIGOBS	205424	66	0.18	31	0.46	15	0.46
Gap134	184016	31	0.07	24	0.83	6	0.90
Gap124	184016	28	0.10	12	0.69	6	0.69
61T.10.10	147244	102	0.3	5	0.77	2	0.77
61T.10.100	187178	451	0.22	7	0.76	7	0.76
61T.10.0pp	179090	>2000	$?$	72	0.03	38	0.03
61T.1af	1433269	>2000	$?$	213	0.18	66	0.18

For more information and references to related work...

- http://www.autonlab.org/autonweb/14667.html
@inproceedings\{neill-rectangles,
Howpublished = \{Conference on Knowledge Discovery in Databases (KDD)
2004\},
Month = \{August\},
Year $=\{2004\}$,
Editor $=\{\mathrm{J}$. Guerke and W. DuMouchel $\}$,
Author $=\{$ Daniel Neill and Andrew Moore $\}$,
Title $=\{$ Rapid Detection of Significant Spatial Clusters $\}$
\}
- http://www.autonlab.org/autonweb/15868.html
@inproceedings\{sabhnani-pharmacy,
Month $=\{$ August $\}$,
Year $=\{2005\}$,
Booktitle $=\{$ Proceedings of the KDD 2005 Workshop on Data Mining Methods for Anomaly Detection\},

Author $=\{$ Robin Sabhnani and Daniel Neill and Andrew Moore $\}$,
Title $=\{$ Detecting Anomalous Patterns in Pharmacy Retail Data\} \}

- Software: http://www.autonlab.org/autonweb/10474.html

For more information and references to related work...

- http://www.autonlab.org/autonweb/16063.html @inproceedings\{kubicaNIPS05,

```
    Month = {December},
    Year = {2005},
    Booktitle = {Advances in Neural Information Processing Systems},
    Author = {Jeremy Kubica and Andrew Moore},
    Title = {Variable KD-Tree Algorithms for Spatial Pattern Search and Discovery}
```

\}

- http://www.autonlab.org/autonweb/14715.html
- @inproceedings\{kubicaKDD2005,

Month $=\{$ August $\}$,
Year $=\{2005\}$,
Pages $=\{138-146\}$,
Publisher $=\{$ ACM Press $\}$,
Booktitle $=\{$ The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining\},
Author $=$ \{Jeremy Kubica and Andrew Moore and Andrew Connolly and Robert Jedicke\},
Title $=\{$ A Multiple Tree Algorithm for the Efficient Association of Asteroid Observations $\}$ \}

- htto://www.autonlab.org/autonweb/14680.html
- @inproceedings\{kubicaSPIE05,

Month $=\{$ August $\}$,
Year $=\{2005\}$,
Publisher $=\{$ SPIE $\}$,
Booktitle $=\{$ Proc. SPIE Signal and Data Processing of Small Targets $\}$,
Editor $=$ \{Oliver E. Drummond\},
Author = \{Jeremy Kubica and Andrew Moore and Andrew Connolly and Robert Jedicke\},
Title $=\{$ Efficiently Identifying Close Track/Observation Pairs in Continuous Timed Data $\}$ \}

Cached Sufficient Statistics
 New searches over cached statistics

Biosurveillance and Epidemiology
Scan Statistics
Cached Scan Statistics
Branch-and-Bound Scan Statistics
Retail data monitoring
Brain monitoring
Entering Google

Asteroids
Multi (and I mean multi) object target tracking
Multiple-tree search
Entering Google

Justifiable Conclusions

Justifiable Conclusions

- Geometry can help tractability of Massive Statistical Data
Analysis
- Cached sufficient statistics are one approach
- Not merely for simple friendly aggregates

Justifiable Conclusions

- Geometry can help tractability of Massive Statistical Data Analysis
- Cached sufficient statistics are one approach
- Not merely for simple friendly aggregates

Fluffy Conclusion
"Theorem of Statistical Computation Benevolence"

If Statistics thinks you're going the right way, it will throw in computational opportunities for you

Papers, Software, Example Datasets, Tutorials: www.autonlab.org

For more information and references to related work...

-

@inproceedings\{neill-rectangles,
Howpublished $=\{$ Conference on Knowledge Discovery in Databases (KDD) 2004\},
Month $=\{$ August $\}$, Year $=\{2004\}$,
Editor $=\{\mathrm{J}$. Guerke and W. DuMouchel $\}$,
Author =\{Daniel Neill and Andrew Moore\},
Title $=\{$ Rapid Detection of Significant Spatial Clusters $\}$
\}

- hithe/lummu autonlah orolautonweb/15868 htm
@inproceedings\{sabhnani-pharmacy,
Month $=\{$ August $\}$, Year $=\{2005\}$,
Booktitle = \{Proceedings of the KDD 2005 Workshop on Data Mining Methods for Anomaly Detection\},
Author $=\{$ Robin Sabhnani and Daniel Neill and Andrew Moore $\}$,
Title $=$ \{Detecting Anomalous Patterns in Pharmacy Retail Data $\}$
\}
- http://www.autonlab.org/autonweb/16063.html @inproceedings\{kubicaNIPS05,

Month $=\{$ December $\}$, Year $=\{2005\}$,
Booktitle $=$ \{Advances in Neural Information Processing Systems $\}$,
Author $=\{$ Jeremy Kubica and Andrew Moore\},
Title $=$ \{Variable KD-Tree Algorithms for Spatial Pattern Search and Discovery\}
\}

- http://www.autonlab.org/autonweb/14715.htm
- @inproceedings\{kubicaKDD2005,

Month $=\{$ August $\}$, Year $=\{2005\}$,
Pages $=\{138-146\}$
Publisher = \{ACM Press $\}$,
Booktitle = \{The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining $\}$
Author = \{Jeremy Kubica and Andrew Moore and Andrew Connolly and Robert Jedicke\},
Title = \{A Multiple Tree Algorithm for the Efficient Association of Asteroid Observations\}
\}

- htto://www.autonlab.ora/autonweb/14680.html
- @inproceedings\{kubicaSPIE05,

Month $=\{$ August $\}$, Year $=\{2005\}$, Publisher $=\{$ SPIE $\}$
Booktitle $=\{$ Proc. SPIE Signal and Data Processing of Small Targets $\}$,
Editor $=\{$ Oliver E. Drummond $\}$,
Author =\{Jeremy Kubica and Ándrew Moore and Andrew Connolly and Robert Jedicke\},
Title $=\{$ Efficiently Identifying Close Track/Observation Pairs in Continuous Timed Data $\}$
\}

- Software: http://www.autonlab.org/autonweb/10474.htm

