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Cached Sufficient Statistics
New searches over cached statistics

Biosurveillance and Epidemiology
Scan Statistics
Cached Scan Statistics
Branch-and-Bound Scan Statistics
Retail data monitoring
Brain monitoring
Entering Google 

Asteroids
Multi (and I mean multi) object target tracking 
Multiple-tree search
Entering Google
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Data Analysis: The new days

• •

Question

Answer

Seventeen 
months later…
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Answer

Mannilla and Toivonen, 1996

Harinarayan et al, 1996

Shanmugasundaram et al 1999

Uhlmann, 1992 



Frequent Sets (Agrawal et al)

KD-trees (Friedman, Bentley, Finkel)

Multi-resolution KD-trees (Deng, Moore)

All-Dimensions Trees (Moore, Lee)

Multi-resolution metric trees (Liu, Moore)

Well-Separated Pairwise Decomposition 
(Callahan 1995)

TimeCube (Sabhnani, Moore)
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..Early Thursday Morning. Russia. April 1979...

Sverdlovsk
collaboration with Daniel Neill  <neill@cs.cmu.edu>





Biosurveillance 
Algorithms



General Detectors

PANDA2: Patient-based 
Bayesian Network
[Cooper, Levander et. al]

BARD: Airborne Attack 
Detection
[Hogan, Cooper et al.]

Fast Scan Statistic
[Neill, Moore]

Fast Scan for 
Oriented Regions
[Neill, Moore et al.]

Historical Model 
Scan Statistic
[Hogan, Moore, Neill, 
Tsui, Wagner]

Bayesian Network 
Spatial Scan
[Neill, Moore, 
Schneider, Cooper 
Wagner, Wong]

Specific Detectors
What’s Strange about Recent Events 
[Wong, Moore, Wagner and Cooper]

Biosurveillance Algorithms

CityDiagnosis (DBN-based 
surveillance): [Anderson, Moore]

EPFC: Emerging Patterns 
from food complaints: 
[Dubrawski, Sabhnani, Moore]



General Detectors
PANDA2: Patient-based 
Bayesian Network
[Cooper, Levander et. al]

BARD: Airborne Attack 
Detection
[Hogan, Cooper]

Fast Scan Statistic
[Neill, Moore]

Fast Scan for 
Oriented Regions
[Neill, Moore et al.]

Historical Model 
Scan Statistic
[Hogan, Moore, Neill, 
Tsui, Wagner]

Bayesian Network 
Spatial Scan
[Neill, Moore, 
Schneider, Cooper 
Wagner, Wong]

Specific Detectors
What’s Strange about Recent Events

Biosurveillance Algorithms
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One Step of Spatial Scan

Entire area being scanned

Current region being considered

I have a population 
of 5300 of whom 53 
are sick (1%) 

Everywhere else has a 
population of 2,200,000 of 
whom 20,000 are sick (0.9%)
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One Step of Spatial Scan

Entire area being scanned

Current region being considered

I have a population 
of 5300 of whom 53 
are sick (1%)

Everywhere else has a 
population of 2,200,000 of 
whom 20,000 are sick (0.9%)

So... is that a big deal? 
Evaluated with Score 
function.

collaboration with Daniel Neill  <neill@cs.cmu.edu>



Scoring 
functions

• Define models:
– of the null hypothesis 

H0: no attacks. 
– of the alternative 

hypotheses H1(S): 
attack in region S.

(Individually Most Powerful statistic for detecting significant increases) (but still…just an example)
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Scoring 
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– of the null hypothesis 

H0: no attacks. 
– of the alternative 

hypotheses H1(S): 
attack in region S.
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Assumption: ci ~ Poisson(qbi)
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One Step of Spatial Scan

Entire area being scanned

Current region being considered

I have a population 
of 5300 of whom 53 
are sick (1%) 

[Score = 1.4]

Everywhere else has a 
population of 2,200,000 of 
whom 20,000 are sick (0.9%)

So... is that a big deal? 
Evaluated with Score 
function (e.g. Kulldorf’s
score)
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Many Steps of Spatial Scan

Entire area being scanned

Current region being considered

I have a population 
of 5300 of whom 53 
are sick (1%) 

[Score = 1.4]

Everywhere else has a 
population of 2,200,000 of 
whom 20,000 are sick (0.9%)

So... is that a big deal? 
Evaluated with Score 
function (e.g. Kulldorf’s
score)

Highest scoring region in search so far

[Score = 9.3]

collaboration with Daniel Neill  <neill@cs.cmu.edu>



collaboration with Daniel Neill  <neill@cs.cmu.edu>

Many Steps of Spatial Scan

Entire area being scanned

Current region being considered

I have a population 
of 5300 of whom 53 
are sick (1%) 

[Score = 1.4]

Everywhere else has a 
population of 2,200,000 of 
whom 20,000 are sick (0.9%)

So... is that a big deal? 
Evaluated with Score 
function (e.g. Kulldorf’s
score)

Highest scoring region in search so far

[Score = 9.3]

So… a kd-tree problem, right?



Computational framework

Data is aggregated to a 
grid.
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grid.

Cost of obtaining sufficient 
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Computational framework

Data is aggregated to a 
grid.

Cost of obtaining sufficient 
statistics for an arbitrary 
rectangle: O(1)

n x n grid has
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Many Steps of Spatial Scan

Entire area being scanned

Current region being considered

I have a population 
of 5300 of whom 53 
are sick (1%) 

[Score = 1.4]

Everywhere else has a 
population of 2,200,000 of 
whom 20,000 are sick (0.9%)

So... is that a big deal? 
Evaluated with Score 
function (e.g. Kulldorf’s
score)

Highest scoring region in search so far

[Score = 9.3]

NO:
Save some 
computation

Can any subregions of me 
possibly do any better?

YES:
Look at 
subregions

collaboration with Daniel Neill  <neill@cs.cmu.edu>



Many Steps of Spatial Scan

Entire area being scanned

Current region being considered

I have a population 
of 5300 of whom 53 
are sick (1%) 
[Score = 1.4]

Everywhere else has a 
population of 2,200,000 of 
whom 20,000 are sick (0.9%)

So... is that a big deal? 
Evaluated with Score 
function (e.g. Kulldorf’s
score)

Highest scoring region in search so far

[Score = 9.3]

NO:
Save some 
computation

Can any subregions of me 
possibly do any better?

YES:
Look at 
subregions

Problem with this method: 

Can only get a weak bound. 

Not much computational 

benefit.

collaboration with Daniel Neill  <neill@cs.cmu.edu>
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Step 1: Gridded

Check a specific 
recursive overlapping 
set of regions called 
“Gridded Regions”
collaboration with Daniel Neill  <neill@cs.cmu.edu>



The multi-resolution tree for 
rectangular regions

collaboration with Daniel Neill  <neill@cs.cmu.edu>



Gridded then Exhaustive

Step 1: Gridded

Check a specific 
recursive overlapping 
set of regions called 
“Gridded Regions”

Step 2: Exhaustive
Consider the set of subregions
of a Gridded Region.

collaboration with Daniel Neill  <neill@cs.cmu.edu>
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Step 1: Gridded

Check a specific 
recursive overlapping 
set of regions called 
“Gridded Regions”

Step 2: Exhaustive
Consider the set of subregions
of a Gridded Region.

A subregion of me could be 
one of five types...

...entirely inside my 
left gridded child

...not entirely inside 
any of my 4 gridded
children

...entirely in my right 
gridded child

...entirely inside my 
bottom gridded child

...entirely inside my 
top gridded child
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Gridded then Exhaustive

Step 1: Gridded

Check a specific 
recursive overlapping 
set of regions called 
“Gridded Regions”

Step 2: Exhaustive
Consider the set of subregions
of a Gridded Region.

A subregion of me could be 
one of five types...

...entirely inside my 
left gridded child

...not entirely inside 
any of my 4 gridded
children

...entirely in my right 
gridded child

...entirely inside my 
bottom gridded child

...entirely inside my 
top gridded child

FACT: Any subregion of this 
type must include the middle...

...and we can put fairly tight 
bounds on how well any 
region of this type can score

Procedure: Exhaust(Gridded Region)

1. Exhaust(Region.Left)

2. Exhaust(Region.Top)

3. Exhaust(Region.Bottom)

4. Exhaust(Region.Right)

5. Is it possible that any “Type 5”
subregion of “Gridded Region” could 
score better than best known score to 
date?

NO: Quit Procedure!

YES: Check all “Type 5”
Subregions



If S’ is a middle-containing subregion of S…

5.   Is it possible that any “Type 5” subregion
of “Gridded Region” could score better 
than best known score to date?

S

M

S’

collaboration with Daniel Neill  <neill@cs.cmu.edu>



If S’ is a middle-containing subregion of S…

5.   Is it possible that any “Type 5” subregion
of “Gridded Region” could score better 
than best known score to date?

S

M

S’

Score(S’) = Score( count(S’) , baseline(S’) )

collaboration with Daniel Neill  <neill@cs.cmu.edu>



If S’ is a middle-containing subregion of S…

5.   Is it possible that any “Type 5” subregion
of “Gridded Region” could score better 
than best known score to date?

S

M

S’
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Score(S’) = Score( count(S’) , baseline(S’) )

An upper bound of 
c/b for any subregion
of S-M

An upper bound of 
c/b for any subregion
of S that contains M

A lower bound on c/b
for any subregion of 
S that excludes M

collaboration with Daniel Neill  <neill@cs.cmu.edu>



If S’ is a middle-containing subregion of S…

5.   Is it possible that any “Type 5” subregion
of “Gridded Region” could score better 
than best known score to date?

S

C

S’

Score(S’) = Score( count(S’) , baseline(S’) )

An upper bound of 
c/b for any subregion
of S-C

An upper bound of 
c/b for any subregion
of S that contains C

A lower bound on c/b
for any subregion of 
S that excludes C
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Properties of D(S)

Pop
1000

Count
5 Pop

1000

Count
500

Score(S) increases with the total count of S, C(S) = ∑S ci. 
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! ! !

0),(Score ≥
∂
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1000
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500

Properties of D(S)

Score(S) decreases with total baseline of S, B(S) = ∑S bi. 

z z z
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∂
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Properties of D(S)

For a constant ratio C / B, Score(S) increases with C and B. 
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If S’ is a middle-containing subregion of S…

5.   Is it possible that any “Type 5” subregion
of “Gridded Region” could score better 
than best known score to date?

S

C

S’

Score(S’) = Score( count(S’) , baseline(S’) )

An upper bound of 
c/b for any subregion
of S-C

An upper bound of 
c/b for any subregion
of S that contains C

A lower bound on c/b
for any subregion of 
S that excludes C

Assume:
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Bottom Line: all the above lets us put 

a good upper bound on Score(S’)
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Tighter score bounds by quartering
• We precompute global bounds on 

populations pij and ratios cij / p ij,   
and use these for our initial 
pruning.

• If we cannot prune the outer 
regions of S using the global 
bounds, we do a second pass 
which is more expensive but 
allows much more pruning.

• We can use quartering to give 
much tighter bounds on 
populations and ratios, and 
compute a better score bound 
using these.
– Requires time quadratic in region 

size; in effect, we are computing 
bounds for all irregular but rectangle-
like outer regions. 

S_1 S_2

S_4S_3

S_C4

S_C1 S_C2

S_C3

collaboration with Daniel Neill  <neill@cs.cmu.edu>



Where are we?

• So we can find the most significant 
region by searching over the desired set 
of regions S, and finding the highest 
D(S).

• Now how can we find whether this 
region actually is a significant cluster?

collaboration with Daniel Neill  <neill@cs.cmu.edu>



Where are we?

• So we can find the most significant 
region by searching over the desired set 
of regions S, and finding the highest 
D(S).

• Now how can we find whether this 
region actually is a significant cluster?

• Randomization testing
Can sometimes cost us 1000 
times more computation!

Though there are further 
tricks…

collaboration with Daniel Neill  <neill@cs.cmu.edu>



Why the Scan Statistic speed obsession?

collaboration with Daniel Neill  <neill@cs.cmu.edu>



Why the Scan Statistic speed obsession?

• Traditional Scan 
Statistics very 
expensive, 
especially with 
Randomization 
tests

• Going national
• A few hours 

could actually 
matter!

collaboration with Daniel Neill  <neill@cs.cmu.edu>



collaboration with Daniel Neill  <neill@cs.cmu.edu>

Which regions to search?

• We choose to search over 
the space of all rectangular
regions.

• We typically expect clusters 
to be convex; thus 
inner/outer bounding boxes 
are reasonably close 
approximations to shape.

• We can find clusters with 
high aspect ratios.
– Important in epidemiology 

since disease clusters are 
often elongated (e.g. from 
windborne pathogens).

– Important in brain imaging 
because of the brain’s 
“folded sheet” structure.

We can find non-
axis-aligned 
rectangles by 

examining multiple 
rotations of the 

data.



SC

d-dimensional partitioning
• Parent region S is divided into 2d 

overlapping children: an “upper child”
and a “lower child” in each dimension.

• Then for any rectangular subregion S’
of S, exactly one of the following is 
true:
– S’ is contained entirely in (at least) one 

of the children S1… S2d.
– S’ contains the center region SC, which 

is common to all the children.
• Starting with the entire grid G and 

repeating this partitioning recursively, 
we obtain the overlap-kd tree
structure.

S5 S1

S2

S3

S4

S6

S

collaboration with Daniel Neill  <neill@cs.cmu.edu>• Algorithm: Neill, Moore and Mitchell NIPS 2005



Results: OTC, fMRI

• fMRI data (64 x 
64 x 14 grid):
– 7-148x speedups 

as compared to 
exhaustive 
search approach.

fMRI data from noun/verb 
word recognition task

collaboration with Daniel Neill  <neill@cs.cmu.edu>



Limitations of the algorithm

• Data must be aggregated to a grid.
• Not appropriate for very high-

dimensional data.
• Assumes that we are interested in 

finding (rotated) rectangular regions.
• Less useful for special cases (e.g. 

square regions, small regions only).
• Slower for finding multiple regions.

collaboration with Daniel Neill  <neill@cs.cmu.edu>



Density-based cluster detection
• Kernel density based 

detection
• Spatial statistics
• Connected 

component 
approaches

• Density optima
• Linear scan 

approximations

collaboration with Daniel Neill  <neill@cs.cmu.edu>



• Kernel density based 
detection

• Spatial statistics
• Connected 

component 
approaches

• Density optima
• Linear scan 

approximations

collaboration with Daniel Neill  <neill@cs.cmu.edu>

• DBSCAN (Ester, 
Kriegel, Sander and 
Xu)

• CFF Clustering 
(Cuevas, Febrero and 
Fraiman)

• CLIQUE (Agrawal, 
Gehrke, Gunopulus, 
and Raghavan)

• Priebe’s method 
(Priebe)

• MAFIA (Goil, Nagesh
and Choudhary)

• DENCLUE (Hinneburg
and Keim)

• STING (Wang, Yang, 
and Muntz)

• Bump Hunting 
(Friedman and Fisher)

Density-based cluster detection



• Kernel density based 
detection

• Spatial statistics
• Connected 

component 
approaches

• Density optima
• Linear scan 

approximations

collaboration with Daniel Neill  <neill@cs.cmu.edu>

• DBSCAN (Ester, 
Kriegel, Sander and 
Xu)

• CFF Clustering 
(Cuevas, Febrero and 
Fraiman)

• CLIQUE (Agrawal, 
Gehrke, Gunopulus, 
and Raghavan)

• Priebe’s method 
(Priebe)

• MAFIA (Goil, Nagesh
and Choudhary)

• DENCLUE (Hinneburg
and Keim)

• STING (Wang, Yang, 
and Muntz)

• Bump Hunting 
(Friedman and Fisher)

• Account for 
varying baseline?

• Are the hotspots 
significant?

• Is there a small 
rise over a large 
stripe?

?

Density-based cluster detection



For more information and references to related work…

• http://www.autonlab.org/autonweb/14667.html
@inproceedings{neill-rectangles,

Howpublished = {Conference on Knowledge Discovery in Databases (KDD) 
2004},

Month = {August},
Year = {2004},
Editor = {J. Guerke and W. DuMouchel},
Author = {Daniel Neill and Andrew Moore},
Title = {Rapid Detection of Significant Spatial Clusters}

} 

• http://www.autonlab.org/autonweb/15868.html
@inproceedings{sabhnani-pharmacy,

Month = {August},
Year = {2005},
Booktitle = {Proceedings of the KDD 2005 Workshop on Data Mining Methods 

for Anomaly Detection},
Author = {Robin Sabhnani and Daniel Neill and Andrew Moore},
Title = {Detecting Anomalous Patterns in Pharmacy Retail Data}

} 

• Software: http://www.autonlab.org/autonweb/10474.html



Cached Sufficient Statistics
New searches over cached statistics

Biosurveillance and Epidemiology
Scan Statistics
Cached Scan Statistics
Branch-and-Bound Scan Statistics
Retail data monitoring
Brain monitoring
Entering Google 

Asteroids
Multi (and I mean multi) object target tracking 
Multiple-tree search
Entering Google
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Scan Statistics
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Branch-and-Bound Scan Statistics
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Brain monitoring
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Asteroids
Multi (and I mean multi) object target tracking 
Multiple-tree search
Entering Google



Asteroid Tracking

Ultimate Goal: Find all asteroids large 
enough to do significant damage, calculate 
their orbits, and determine risk.

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Why Is This Hard/Interesting?

Partial Observability:
• Positions are in 3-d space.

• We see observations from 
earth.

• We see two angular 
coordinates (α, δ)

• We do not see the 
distance (r).

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Why Is This Hard/Interesting?

Temporally sparse:
• Each region viewed 

infrequently.  
• Each viewing only covers a 

fraction of the sky.

t

δ

α

~4 days ~30 min.

t

δ

α

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Why Is This Hard/Interesting?
Lack of initial parameter information (and 

temporally sparse):
• We do not have initial estimates of all of the motion 

parameters.
• This becomes a significant problem for large gaps in 

time.
δ

t

α
collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>
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Problem Overview

Asteroid Tracking

Observation/
Detection/
Filtering

Identifying Known 
Objects

(attribution)

Finding New 
Objects

(linkage/track 
initiation)

“Tracking”:
• Prediction

• Data Association
• Maintenance

Orbit Fitting

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Problem Overview

Asteroid Tracking
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Detection/
Filtering

Identifying Known 
Objects

(attribution)

Finding New 
Objects

(linkage/track 
initiation)

“Tracking”:
• Prediction

• Data Association
• Maintenance

Orbit Fitting

1

1 1

11

1
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1

1

1

1

1
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Problem Overview

Asteroid Tracking

Observation/
Detection/
Filtering

Identifying Known 
Objects

(attribution)

Finding New 
Objects

(linkage/track 
initiation)

“Tracking”:
• Prediction

• Data Association
• Maintenance

Orbit Fitting
1

1

1

1 1

11

1

1

1

1

1

1

1
1

1

11

1

This is just 
Halley’s comet!

This is just 
Pluto!

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Problem Overview

Asteroid Tracking

Observation/
Detection/
Filtering

Identifying Known 
Objects

(attribution)

Finding New 
Objects

(linkage/track 
initiation)

“Tracking”:
• Prediction

• Data Association
• Maintenance

Orbit Fitting

1 1

11

1

1

1

1

1

1

1
1

2

2

2

2

2

3 3

3

3

3

3

3

3 3

2

2

2

2

3

2
3

11
2

3

This looks like it 
could be the start 

of a track!
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Problem Overview

Asteroid Tracking

Observation/
Detection/
Filtering

Identifying Known 
Objects

(attribution)

Finding New 
Objects

(linkage/track 
initiation)

“Tracking”:
• Prediction

• Data Association
• Maintenance

Orbit Fitting
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The track continues 
over here.
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Problem Overview

Asteroid Tracking

Observation/
Detection/
Filtering

Identifying Known 
Objects

(attribution)

Finding New 
Objects

(linkage/track 
initiation)

“Tracking”:
• Prediction

• Data Association
• Maintenance

Orbit Fitting
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Problem Overview

Asteroid Tracking

Observation/
Detection/
Filtering

Identifying Known 
Objects

(attribution)

Finding New 
Objects

(linkage/track 
initiation)

“Tracking”:
• Prediction

• Data Association
• Maintenance

Orbit Fitting

Initial Linkage and Tracking Algorithm:
Established techniques in astronomy 
and techniques from general target 

tracking.

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Previous Approaches

• Look for sets with linear movement over a 
short time span (Kristensen 2003, Milani 2004).

t

x

• Proposed sets of observations are tested by 
fitting an orbit.

• “Close” observations from 
same night linked and used 
to estimate line (Marsden
1991, Milani 2004).

• Asteroid is projected to later 
nights and associated with 
other observations.

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Previous Approaches: 
Drawbacks

1. Linear projections will only be valid 
over a short time span.

2. Checking every neighbor can be 
expensive.

3. Orbit fitting is only applied after sets 
are found with linear approximation.  

– May need to fit many orbits to incorrect 
sets.

– May incorrectly reject true linkages 
based on linear model.

Accuracy

Cost

Cost

Accuracy

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Initial Improvements
• We can improve accuracy and 

tractability by using techniques from 
general target tracking:
– Sequential tracking,
– Multiple hypothesis tracker, 
– Use of spatial structure via kd-trees, and
– Quadratic track models.

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Evaluation

Model
kd-

trees?
Time 
(sec)

Percent 
Found

Percent 
Correct

Linear No 93 96.22 2.06
Linear Yes 6 96.22 2.06

Quadratic No 59 96.38 88.67
Quadratic Yes 3 96.38 88.67

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Why “M-trees” method?

• Sequential approach is 
heuristic. We could end 
up doing a significant 
amount of work for “bad 
pairs”. 

• Early associations may be 
done with incomplete 
and/or noisy parameters.

• Next observation may be 
far from predicted position.

dist

dist

ΔT

• Problem gets much worse as gap between 
observations increases.

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Motivation 2: Constrained Feasibility
• Find all tuples of observations such that:

– We have exactly one observation per time, and
– a track can exist that passes “near” the 

observations:

ζ L[d] ≤  xi[d] -  g(t i )[d]≤  ζ H[d]

x

tt0 t1 t2 t3 t4 t5

Can phrase 
constraints in terms 
of only observation 

error!

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Feasibility

• “Can any track exist that is near all of the 
observations?”

• Each observation’s bounds give constraints on 
track’s position at that time:

• We must either:
– Find parameters satisfying these equations, OR
– Prove that no such parameters exist.

ε[d]xp[d]v[d]ta[d]t

ε[d]xp[d]v[d]ta[d]t

iii

iii

+≤++

−≥++
2

2

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Multiple Tree Approach

• Our approach: Use a multi-tree 
algorithm (Gray and Moore 2001):
– Build multiple kd-trees over 

observations.
– Do a depth first search of combinations

of tree nodes. 

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



T1 T2 T3

Multiple Tree Depth First 
Search

t

δ

α

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>
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Multiple Tree Depth First 
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T1 T2 T3

Multiple Tree Depth First 
Search

t

δ

α
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T1 T2 T3

Multiple Tree Depth First 
Search

t

δ

α
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T1 T2 T3

Multiple Tree Depth First 
Search

t

At leaf nodes, we 
check all combinations 

of the points.

δ

α

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



T1 T2 T3

Multiple Tree Depth First 
Search

We Can 
Prune!

t

δ

α

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>



Pruning
• “Can any track exist that hits all nodes?”

Given times t1, t2, …tM, and given kdtree bounding 
boxes (L1,H1), (L2,H2), … (LM,HM), at those times, 
we ask…

• Pruning = proving that such parameters do not 
exist.

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>

ε[d]Hp[d]v[d]ta[d]t iii +≤++2

ε[d]Lp[d]v[d]ta[d]t iii −≥++2
},2,1{},,2,1{. DdMi LL ∈∀∈∀∃ pv,a,

” ?

“



collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>

Pruning: Independent Dimensions

Theorem 1: (a,v,p) is a feasible track if and 
only if (a[i],v[i],p[i]) satisfies the 
constraints in the i-th dimension for all i.

• Allows us to check the dimensions 
separately.

• Breaks query on 2MD constraints into D
sub-queries of MD constraints.  

• Each sub-query consists of significantly 
fewer variables. 

M = Number of timesteps (eg 4-6), D = Number of obs. dim’ns (eg 2), C = # Track params (eg 3)



collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>

Constraints as Hyper-planes

• Each constraint specifies 
a C dimensional hyper-
plane and half-space in 
parameter space:

p

v

• If the intersection of the feasible half-spaces is not 
empty,  then there exists a track that satisfies all of the 
constraints.

pvtH +<+ε

ε++−> Hvtp )(

M = Number of timesteps (eg 4-6), D = Number of obs. dim’ns (eg 2), C = # Track params (eg 3)
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Smart Brute Force Search

• Search “corners” of 
constraint hyper-planes 
for feasible point.

• C nonparallel C-
dimensional hyper-planes 
intersect at a point 
(“Corner”).

p

v

• Theorem 2: The intersection of M half-spaces defined by 
at least C nonparallel C-dimensional hyper-planes is not 
empty if and only if there exists a point (a,v,p) such that 
(a,v,p) is feasible and lies on at least C hyper-planes.

M = Number of timesteps (eg 4-6), D = Number of obs. dim’ns (eg 2), C = # Track params (eg 3)
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Smart Brute Force Search

• For each set of C 
nonparallel hyper-
planes:
– Calculate the point of 

intersection.
– Test point for feasibility 

against other 
constraints.

p

v

• Positives: Simple, exact
• Negatives: Painfully slow -> O(DM(C+1))

M = Number of timesteps (eg 4-6), D = Number of obs. dim’ns (eg 2), C = # Track params (eg 3)
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Using Structure In the Search

• The tree search provides a significant 
amount of structure that can be exploited:
– At each level of the search, the constraints for 

all tree nodes except one are identical to the 
previous level.

We can save the 
feasible track from 

previous level and test it 
against new (tighter) 

constraints.
M = Number of timesteps (eg 4-6), D = Number of obs. dim’ns (eg 2), C = # Track params (eg 3)
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Using Structure In the Search

• The tree search provides a significant 
amount of structure that can be exploited:
– At each level of the search, the constraints for 

all tree nodes except one are identical to the 
previous level.

– At each level of the search, the constraints for 
the one tree node that changed are tighter
than at the previous level.We can look for a new 

feasible point on 
hyper-planes from new 

constraints.
M = Number of timesteps (eg 4-6), D = Number of obs. dim’ns (eg 2), C = # Track params (eg 3)
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Using Structure In the Search

Theorem 3: If the feasible track from the 
previous level is not compatible with a 
new constraint then either the new set of 
constraints is not compatible or a new 
feasible point lies on the plane defined by 
the new constraint.

• Allows us to only check corners containing 
new constraints -> O(DMC)

• Allows us to check new constraints one at 
a time.

M = Number of timesteps (eg 4-6), D = Number of obs. dim’ns (eg 2), C = # Track params (eg 3)
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Using Structure In the Search

• We can combine 
search and test steps.
– C-1 hyper-planes 

intersect at a line.
– Remaining hyper-

planes intersect the 
line at signed points.

– There is feasible point on those C-1 
constraints if and only if there is a feasible 
point on the line.

• Reduces cost to O(DM(C-1)).
M = Number of timesteps (eg 4-6), D = Number of obs. dim’ns (eg 2), C = # Track params (eg 3)
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Additional Constraints

• This formulation of constraints allows us 
to add additional (non-node-based) 
constraints:

• This allows us to encode additional 
domain knowledge!

vmin[d ] ≤ v[d] ≤ vmax[d]
amin[d ] ≤ a[d] ≤ amax[d]

M = Number of timesteps (eg 4-6), D = Number of obs. dim’ns (eg 2), C = # Track params (eg 3)



Multiple Trees: Advantages

• Allows us to consider 
pruning opportunities 
resulting from future 
time-steps.

• Reduces work 
repeated over similar 
observations/initial 
tracks.

collaboration with Jeremy Kubica  <jkubica@cs.cmu.edu>
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Experiments

0.18
0.03
0.76
0.77
0.69
0.83
0.46

Singletree 
P(C)

213
72

7
5

12
24
31

Singletree 
secs

0.7720.310214724461T.10.10
0.6960.1028184016Gap124
0.9060.0731184016Gap134

V-tree 
P(C)

V-Tree 
secs

Seq
P(C)Seq secs

Num 
PointsExperiment

0.1866?>2000143326961T.1af
0.0338?>200017909061T.10.opp
0.7670.2245118717861T.10.100

0.46150.1866205424BIGOBS



For more information and references to related work…

• http://www.autonlab.org/autonweb/14667.html
@inproceedings{neill-rectangles,

Howpublished = {Conference on Knowledge Discovery in Databases (KDD) 
2004},

Month = {August},
Year = {2004},
Editor = {J. Guerke and W. DuMouchel},
Author = {Daniel Neill and Andrew Moore},
Title = {Rapid Detection of Significant Spatial Clusters}

} 

• http://www.autonlab.org/autonweb/15868.html
@inproceedings{sabhnani-pharmacy,

Month = {August},
Year = {2005},
Booktitle = {Proceedings of the KDD 2005 Workshop on Data Mining Methods 

for Anomaly Detection},
Author = {Robin Sabhnani and Daniel Neill and Andrew Moore},
Title = {Detecting Anomalous Patterns in Pharmacy Retail Data}

} 

• Software: http://www.autonlab.org/autonweb/10474.html



For more information and references to related work…

• http://www.autonlab.org/autonweb/16063.html @inproceedings{kubicaNIPS05,
Month = {December},
Year = {2005},
Booktitle = {Advances in Neural Information Processing Systems},
Author = {Jeremy Kubica and Andrew Moore},
Title = {Variable KD-Tree Algorithms for Spatial Pattern Search and Discovery}

} 

• http://www.autonlab.org/autonweb/14715.html
• @inproceedings{kubicaKDD2005,

Month = {August},
Year = {2005},
Pages = {138-146},
Publisher = {ACM Press},
Booktitle = {The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining},
Author = {Jeremy Kubica and Andrew Moore and Andrew Connolly and Robert Jedicke},
Title = {A Multiple Tree Algorithm for the Efficient Association of Asteroid Observations}

} 

• http://www.autonlab.org/autonweb/14680.html
• @inproceedings{kubicaSPIE05,

Month = {August},
Year = {2005},
Publisher = {SPIE},
Booktitle = {Proc. SPIE Signal and Data Processing of Small Targets},
Editor = {Oliver E. Drummond},
Author = {Jeremy Kubica and Andrew Moore and Andrew Connolly and Robert Jedicke},
Title = {Efficiently Identifying Close Track/Observation Pairs in Continuous Timed Data}

}



Cached Sufficient Statistics
New searches over cached statistics

Biosurveillance and Epidemiology
Scan Statistics
Cached Scan Statistics
Branch-and-Bound Scan Statistics
Retail data monitoring
Brain monitoring
Entering Google 

Asteroids
Multi (and I mean multi) object target tracking 
Multiple-tree search
Entering Google



Justifiable Conclusions



Justifiable Conclusions
• Geometry can help 

tractability of Massive 
Statistical Data 
Analysis

• Cached sufficient 
statistics are one 
approach

• Not merely for simple 
friendly aggregates



Justifiable Conclusions
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Fluffy Conclusion
“Theorem of Statistical 

Computation 
Benevolence”

If Statistics thinks you’re 
going the right way, it will 
throw in computational 
opportunities for you

Papers, Software, Example 
Datasets, Tutorials: 
www.autonlab.org



For more information and references to related work…
• http://www.autonlab.org/autonweb/14667.html
@inproceedings{neill-rectangles,

Howpublished = {Conference on Knowledge Discovery in Databases (KDD) 2004},
Month = {August}, Year = {2004},
Editor = {J. Guerke and W. DuMouchel},
Author = {Daniel Neill and Andrew Moore},
Title = {Rapid Detection of Significant Spatial Clusters}

} 

• http://www.autonlab.org/autonweb/15868.html
@inproceedings{sabhnani-pharmacy,

Month = {August}, Year = {2005},
Booktitle = {Proceedings of the KDD 2005 Workshop on Data Mining Methods for Anomaly Detection},
Author = {Robin Sabhnani and Daniel Neill and Andrew Moore},
Title = {Detecting Anomalous Patterns in Pharmacy Retail Data}

} 
• http://www.autonlab.org/autonweb/16063.html @inproceedings{kubicaNIPS05,

Month = {December}, Year = {2005},
Booktitle = {Advances in Neural Information Processing Systems},
Author = {Jeremy Kubica and Andrew Moore},
Title = {Variable KD-Tree Algorithms for Spatial Pattern Search and Discovery}

} 

• http://www.autonlab.org/autonweb/14715.html
• @inproceedings{kubicaKDD2005,

Month = {August}, Year = {2005},
Pages = {138-146},
Publisher = {ACM Press},
Booktitle = {The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
Author = {Jeremy Kubica and Andrew Moore and Andrew Connolly and Robert Jedicke},
Title = {A Multiple Tree Algorithm for the Efficient Association of Asteroid Observations}

} 

• http://www.autonlab.org/autonweb/14680.html
• @inproceedings{kubicaSPIE05,

Month = {August},Year = {2005}, Publisher = {SPIE},
Booktitle = {Proc. SPIE Signal and Data Processing of Small Targets},
Editor = {Oliver E. Drummond},
Author = {Jeremy Kubica and Andrew Moore and Andrew Connolly and Robert Jedicke},
Title = {Efficiently Identifying Close Track/Observation Pairs in Continuous Timed Data}

}

• Software: http://www.autonlab.org/autonweb/10474.html


