
Data Integration, Entity Reconciliation and Search in
Personal Information Networks

Srivatsa Iyengar
IIT Bombay

Apurva Jadhav
Yahoo! Bangalore

Soumen Chakrabarti∗
IIT Bombay

Vikas Kedia
IIT Bombay

ABSTRACT
We present SPIN, a system for Searching Personal Informa-
tion Networks. SPIN seeks to integrate entities and relations
from a wide variety of data sources such as address books,
emails, documents on file systems, blogs, messenger sessions,
social networks and the Web into the PINDB: a universal
graph format that has typed nodes, typed edges, and text
associated with the nodes. Using the latest techniques for
information extraction and deduplication, SPIN adds “soft
edges” to the PINDB that correspond to entity aliases and
mentions. SPIN’s search algorithms then use this represen-
tation to respond to a hierarchy of useful semi-structured
query classes with proximity, aggregation and ranking se-
mantics that improves substantially beyond simple desktop
search tools. SPIN is a self-contained Java application and
has a modular architecture where other researchers can plug
in new approaches to data integration and search.

1. INTRODUCTION
Storage systems have become dramatically affordable over

the last few years, enabling large-scale archival of emails,
contacts and documents on personal computers. Large per-
sonal storage can be used effectively only if efficient data
integration and search tools are available. Recent operating
systems can index hard disks and enable keyword search over
many file types. Web-based email services include keyword
search support. Many Web search companies offer desk-
top applications that can index and search the file system,
emails and browser caches. Many research prototypes exist
as well [11, 9, 1, 2].

Most products and prototypes have stayed close to tradi-
tional IR: they lack the capability to discover and represent
entities and relations from the indexed data as first-class
objects or reconcile entities from diverse and heterogeneous
sources. Meanwhile, there is a need for extensive evaluation
of the cutting-edge research literature on data integration
[10, 8], named-entity tagging [16, 12], relation extraction
[3], record linkage, deduplication [15, 9] and graph search
[5, 4] in large-scale applications.

Our proposed system SPIN (acronym for Searching Per-
sonal Information Networks) is a platform where such min-
ing and searching ideas can be tested on real personal data,
and is at the same time a powerful personal information
management and search application. Our goals overlap with
those of the RADAR [2], CALO [1] and IRIS [6] projects, but
SPIN is also concerned with efficient data representation,
indexing and update issues, as well as integrating advanced

∗Contact author soumen@cse.iitb.ac.in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

semistructured search with the information and graph min-
ing components.

2. SPIN ARCHITECTURE

2.1 PINDB and PINSchema
A PINDB consists of typed entities (nodes) and rela-

tions (edges) between these entities [5, 4]. Entities can be
persons, organizations, places, events, projects, trips, soft-
ware, subscriptions and other artifacts. These are extracted
from mentions in textual and semistructured sources, such
as address books, documents and email. PIN edges repre-
sent relations. Some are “hard” edges explicitly found in
the data, e.g., person sent email or email is-reply-to email.
Others are “soft” or probabilistic edges induced through
information extraction, e.g., person wrote paper or email
mentions person. Yet other soft edges are created by recon-
ciling aliases. The PINSchema is a concise and accurate
structural summary of the PIN graph. It is a graph among
node-types connected through edge-types. All data in the
PINDB and PINSchema is indexed using Lucene and stored
in a Berkeley DB database.

Figure 1: SPIN architecture.

2.2 Adapters
Adapters are responsible for populating the PINDB from

various data sources conforming to the PINSchema. SPIN
currently has adapters for emails, address books, research
papers, and directory services. These adapters readily plug
into an adapter registry that tells each of them how to embed
graph fragments extracted from its source into the PINDB.

SPIN wraps APIs published by Web search companies
with query generators that use PINDB context intelligently.
E.g., although there are many Tom Mitchells mentioned on
the Web, a PINDB context comprising emails and research
papers can enable the search adapter to pad “Tom Mitchell”
with other words (“machine learning” and “brain imaging”)

1

to disambiguate the base entity. In future, SPIN will also
incorporate trainable Web extractors which can then be used
to quickly augment the PINDB with contact information,
additional papers, etc.

We are also adding adapters for popular social networks
like LinkedIn (http://www.linkedin.com) and Orkut (http:
//www.orkut.com), which will let us further augment the
PIN graph. As the Semantic Web vision matures, the Web
itself will start looking more like a gigantic PINDB. Many of
the search paradigms that we will discuss next will extend
naturally to the external Web.

2.3 Reconcilers
A single real-world entity (e.g. person) may be repre-

sented by multiple nodes in the PINDB because they were
extracted from different sources (e.g., email, paper, Web
page) using different adapters. At this stage, reconcil-
ers take over: using machine learning techniques [15, 9] for
alias resolution, the reconcilers introduce soft edges into the
PINDB. One kind of soft edge connects aliases—nodes that
are likely to refer to the same real-world entity. Another
kind of soft edge connects mentions of entities to entities,
e.g., an edge from an email to a person if the email body is
likely to have mentioned that person.

Reconcilers aggregate information about an entity that
would otherwise remain scattered in the PINDB, and it
improves search accuracy. In activation search (discussed
later), scores distributed across alias nodes reinforce each
other after reconciliation, and activation from an attribute
of one alias can increase the score of another alias.

We use a graphical model for reconciliation [15]. A node
in the model represents either a pair of records or a pair
of attributes. Edges connect the record pair node to the
corresponding attribute pair nodes. E.g., to reconcile per-
sons, we use person name and affiliation as attributes. We
iteratively train the model using a voted perceptron [7]. In
each iteration we actively select record pairs similar to ones
wrongly labeled in the previous iteration and add them to
the training set. While inferencing, we first use a canopy
[13] to prune out highly dissimilar record pairs. Then we
use the graphical model we learnt to infer duplicate pairs
using a mincut algorithm [15].

On a collection of research papers collected from a user’s
file system, SPIN’s reconciler obtained an F1 score of about
0.77 on the task of reconciling person nodes. Unlike research
prototypes, SPIN is designed to accept continual corrective
input from the user and integrate these into its reconciliation
system. Some examples of the benefits of reconciliation can
be found in Section 4.

3. SEARCHING AND BROWSING
3.1 The 3-tier query paradigm

SPIN includes a proximity-assisted, type-sensitive query
system. We provide a hierarchy of query paradigms: free-
form keyword queries which require the same low cognitive
load as Web queries, type-near queries that activate en-
tities of a specified type with match predicates, and twig
queries for users who are ready to exploit the PINSchema.
Depending on the information need, even seasoned users find
all the query paradigms handy.

The type-near paradigm is particularly powerful given
its simplicity. E.g., the user can look for a student who
graduated in 2001 and went to work at IBM using the query

type=person NEAR org=IBM year=2001. However, seasoned
users can exploit more sophisticated predicates after NEAR,
involving shallow PINSchema knowledge [14]. In SPIN, ev-
ery entity is a set of (field,value) pairs. E.g., an email
has fields From, To, Subject and Body. Assisted by the PIN-
Schema, the user can visually edit a query whose string rep-
resentation might look like type=org NEAR combine((From

OR Subject)= "John Matthews", Email=ANY), which will
seek organizations near emails that contain “John Matthews”
in the From or Subject fields. In most cases, SPIN auto-
prompts type and field names.

Twig queries are similar to their XML counterpart in
that they (visually) specify a small schema skeleton, such
as email ←sent− person −works-for→ org, but the twig is
activated by other predicates as in type-near queries. Twig
queries are useful while searching for events, e.g. “find an
email about XML sent by someone working in Germany.”

3.2 Browsing search results
The response to a SPIN query is an ordered list of nodes

or twigs. In Web search, text snippets associated with each
URL are very valuable for user relevance judgment. In
SPIN, a “snippet” is really a graph fragment that explains
the large score of the response nodes or twigs. A great deal
of care is needed to maintain a display of a screen-sized
portion of graph contexts as “snippets.” As the user clicks
around in the response fragments, SPIN continually com-
putes the worth of displaying nodes on (precious) screen
area, and evicts unnecessary nodes unobtrusively. Screen-
shots of SPIN can be found at http://www.cse.iitb.ac.

in/~soumen/tmp/kdd2006spin

4. INITIAL EXPERIENCE
We compared SPIN with commercial desktop search sys-

tems by running similar queries on all systems, with similar
data. E.g., we ran the query type=paper NEAR ("HITS"),
hoping to retrieve Kleinberg’s famous HITS paper. The re-
sults obtained are summarized in the following table. Rank-
ing produced by Google Desktop does not seem to exploit
the linkage structure of citations. SPIN nails the best doc-
ument right at the top of the list.
SPIN
Authoritative sources in a hyperlinked environment
Improved algorithms for topic distillation in a hyperlinked...
Focused crawling a new approach to topic specific web...
Mining sequential patterns
Learning to probabilistically identify authoritative documents
Google Desktop
Not all hits are created equal cooperative proxy caching...
A unified framework for web link analysis
Link fusion, a unified link analysis framework for multitype...
Entropy based link analysis for mining web informative...
Learning to create customized authority lists
Different papers may list the same author slightly differ-

ently, as with Jon Kleinberg and J. M. Kleinberg in the sam-
ple graph in Figure 2. These start out as different nodes in
SPIN because they were imported from different papers, or
perhaps even by different adapters (email and papers, say).
These nodes are connected to papers authored by Jon Klein-
berg. In SPIN, all links are bidirectional, so high prestige of
a paper is conducted to its author.

Before reconciliation, the endorsement from high-prestige
papers would be divided among the multiple alias nodes
for Kleinberg. Reconciliation involves connecting aliases
by an edge or hyperedge (shown as a “supernode” around
the two alias nodes). After reconciliation, papers transfer

2

Figure 2: Effect of reconciliation on ranking.

some of their prestige to the single supernode for the rec-
onciled authors, thereby improving its rank. Thus Klein-
berg is more likely to top the list of responses to the query
type=person NEAR ("web graph" "link topology") after
reconciliation.

Reconciliation also helps to combine information captured
from various adapters. In the above example a course news-
group adapter reads an email containing a mention of Klein-
berg in the body and creates a graph fragment as shown in
Figure 3. (Like hyperedges, the “mentioned-in” edge is a
soft edge.)

Figure 3: Reconciliation and “mention” edges.

The query “find papers written by persons mentioned in
newsgroup postings” (which can be expressed as a SPIN twig
query) is unlikely to return the papers written by Kleinberg
since the mention node “Kleinberg” remains disconnected
from the graph fragments emitted by other adapters. A
reconciler for person nodes will likely reconcile this node
with other nodes in the PIN graph and the above query will
return results including the some of the papers written by
Kleinberg.

5. DEMONSTRATION SUMMARY
We will present a live demonstration of many of SPIN’s ca-

pabilities. We will show the important adapters (email, pa-
pers, address books, and a publication-oriented Web adapter)

at work. We will also show how the reconciler introduces
soft edges between aliases, and between mentions and en-
tities. We will demonstrate some of the dominant query
paradigms, and argue, through examples, that the linkage
through the PINDB lead to better scoring and ranking than
possible with a standard IR-based desktop search solution.
We will also show the benefits of the browsing interface, with
its intuitive graph contexts explaining why the top-ranking
responses are related closely to the query.

6. REFERENCES

[1] CALO - Cognitive Assistant that Learns and
Organizes. http://www.ai.sri.com/project/CALO.

[2] RADAR - Reflective Agents with Distributed
Adaptive Reasoning. http://www.radar.cs.cmu.edu.

[3] E. Agichtein and L. Gravano. Snowball: Extracting
relations from large plain-text collections. In ICDL,
pages 85–94. ACM, 2000.

[4] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Authority-based keyword queries in databases using
ObjectRank. In VLDB, Toronto, 2004.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE. IEEE, 2002.

[6] A. Cheyer, J. Park, and R. Giuli. IRIS: Integrate.
Relate. Infer. Share. In ISWC 2005 Workshop on The
Semantic Desktop, 2005.

[7] M. Collins. Ranking algorithms for named entity
extraction: Boosting and the voted perceptron. In
ACL Conference, pages 489–496, 2002.

[8] A. Doan, P. Domingos, and A. Y. Levy. Learning
source description for data integration. In WebDB
(Informal Proceedings), pages 81–86, 2000.

[9] X. Dong, A. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In ACM
SIGMOD Conference, pages 85–96, 2005.

[10] D. Florescu, D. Koller, and A. Y. Levy. Using
probabilistic information in data integration. In The
VLDB Journal, pages 216–225, 1997.

[11] D. R. Karger and D. Quan. Haystack: A user interface
for creating, browsing, and organizing arbitrary
semistructured information. In Human Factors in
Computing Systems (ACM CHI), pages 777–778, 2004.

[12] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML, 2001.

[13] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In SIGKDD
Conference, pages 169–178, 2000.

[14] D. Metzler and W. B. Croft. Combining the language
model and inference network approaches to retrieval.
Information Processing and Management,
40(5):735–750, 2004.

[15] Parag and P. Domingos. Multi relational record
linkage. In SIGKDD Multi-Relational Data Mining
Workshop, 2004.

[16] S. Soderland. Learning information extraction rules
for semi-structured and free text. Machine Learning,
34(1-3):233–272, 1999.

3

